Research article
Effects of lactoferrin on osteogenic differentiation and related gene expressions of osteoblast precursor cells MC3T3-E1 under mechanical strain
Jianfeng Sun, Xiaomeng Zhu, Mengke Ge, Chenchen Zhou, Yuyu Li
Correspondence should be addressed to: Yuyu Li
Abstract: We aimed to evaluate the effects of lactoferrin (LF) on the osteogenic differentiation and related gene expressions of mouse embryonic osteoblast precursor cells MC3T3-E1 under mechanical strain. MC3T3-E1 cells were randomly divided into control, strain loading, LF and strain loading + LF groups. Alkaline phosphatase (ALP) activity was measured. Cytoskeletal morphology was measured by rhodamine-phalloidin staining. Formation of mineralized nodules was observed by alizarin red staining. The expressions of differentiation-related genes type I collagen (COL-1), interleukin-6 (IL-6) and osteocalcin (OCN) were determined by RT-PCR, and those of p-Runx2 and p-ERK1/2 proteins were detected by Western blotting. The number of ALP positive cells and expressions of OCN, COL-1 and IL-6 were significantly elevated (P<0.05). The optical density of strain loading + LF group was higher than those in strain loading and LF groups after incubation for 4 and 7 days (P<0.05). The cell volume and extension range were elevated in strain loading + LF group compared with those in strain loading group. The amount of mineralized nodules in strain loading + LF group was significantly higher than those in strain loading and LF groups, while it was slightly higher in LF group than that in strain loading group. The expressions of p-ERK1/2 and p-Runx2 in strain loading + LF group exceeded those in strain loading and LF groups (P<0.05). The synergistic action of LF and mechanical strain can effectively promote the proliferation, differentiation and mineralization of osteoblasts, probably being associated with the ERK1/2 signaling pathway.
Keywords: lactoferrin; mechanical strain; MC3T3-E1; proliferation; differentiation
Received: 26.10.2021
Accepted: 31.12.2021
Published: 9.1.2022
|