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Abstract
The innate immune system is mandatory for the activation of antiviral host defense and eradication of the infection. 
In this regard, dendritic cells, natural killer cells, macrophages, neutrophils representing the cellular component, 
and cytokines, interferons, complement or Toll-Like Receptors, representing the mediators of unspecific response 
act together for both activation of the adaptive immune response and viral clearance. Of great importance is the 
proper functioning of the innate immune response from the very beginning. For instance, in the early stages of viral 
infection, the defective interferon response leads to uncontrolled viral replication and pathogen evasion, while hy-
persecretion during the later stages of infection generates hyperinflammation. This cascade activation of systemic 
inflammation culminates with cytokine storm syndrome and hypercoagulability state, due to a close interconnection 
between them. Thus an unbalanced reaction, either under- or over- stimulation of the innate immune system will 
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Introduction
Among Coronaviruses (CoVs), SARS-CoV-2 
was first identified during December 2019 in 
China (1) to be the cause of the COVID-19 
disease and the infection was quickly labeled 
as a pandemic in March 2020 (2). By compar-
ison with the previous SARS-CoV and MERS 
that caused loco-regional restricted epidemics 
(3), the SARS-CoV-2 was highly infectious and 
pathogenic, causing over 174,000,000 cases and 
over 3,758,000 deaths around the world by June 
10th, 2021 (https://COVID19.who.int) (4).
For SARS-CoV-2 infected persons, symptoms 
vary having iceberg-type features, from asymp-
tomatic carriers to severe acute respiratory syn-
drome (SARS), with mild/moderate symptoms 
between the two extremes (5). The virus can be 
detected using the RT-PCR procedure and the 
positive test is used to recommend urgent isola-
tion or quarantine of the individuals. However, 
new variants potentially undetected by first-gen-
eration tests have emerged, indicating the need 
for monitoring by viral genome sequencing (5).
Virus entry into host cells is mediated by the 
ACE-2 receptor and transmembrane protease 
serine 2 (TMPRSS2). The primary target cells 
are in the lung, but various extrapulmonary cells 
(gastrointestinal tract, heart, kidney, liver, and 
nervous system) have also been found to be in-
fected (6).
Upon infection with viruses, hosts usually mount 
a multifaceted immune response against the in-
fection and the response can be divided but not 
separated into the innate and adaptive immune 
responses (5). However, SARS-CoV-2 infection 
has peculiar characteristics and outcomes, sug-

gesting a unique immunopathogenic process. 
Indeed, the infections leading to COVID-19 are 
frequently triggered by profound dysregulation 
in the immune response, especially the cytokine 
storm which often increases the mortality rate 
(7). Despite the critical role of immune response 
to SARS-CoV-2 infection, reports on innate im-
mune response are scarce. Therefore, this review 
was conducted to provide insights into involve-
ment of the innate immune system as a critical 
host defense step against SARS-CoV-2 infec-
tion. 

Players of the Innate Immunity

The innate response is the first line of host de-
fense against pathogens and non-pathogens. It 
is an extensive response that involves different 
categories of activities: epithelial and mucosal 
barriers with their secretory products that serve 
as chemical barriers, cells of non-specific im-
munity (neutrophils, monocytes, macrophages, 
dendritic cells, eosinophils, NK cells), and vari-
ous molecules and proteins such as Toll-like-re-
ceptors (TLRs), acute phase reactants and cyto-
kines. However, there are individual differences 
in the response, e.g., genetic polymorphisms of 
cytokines and receptors, genetic susceptibilities 
related to HLA haplotypes (8), which may im-
pact disease outcomes (9–11). Although, until 
recently, the general beliefs were that only adap-
tive immune system possesses immunological 
memory that facilitates an immediate enhanced 
immune response during the second encounter 
with the same pathogen, more and more studies 
argue that also the innate immune system is able 

lead to an uncoordinated response and unfavorable disease outcomes. Since both cellular and humoral factors 
are involved in the time-course of the innate immune response, in this review we aimed to address their gradual 
involvement in the antiviral response with emphasis on key steps in SARS-CoV-2 infection.
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to mount the immunological memory (12). This 
seems to be achieved by increased accessibili-
ty of transcription factors to pro-inflammatory 
genes by shaping the epigenetic and metabolic 
environment of the cells (12). 

Epithelial and mucosal barriers 
Physical barriers are represented by epidermal 
and mucosal layers. The keratinocytes, the most 
predominant cells of the epidermis, originating 
from the basal layer constitute a major barrier for 
microbes and water, due to keratin secretion and 
other substances with antibacterial functions like 
defensin, cathelicidins, or lactic acid (13,14). In 
addition, the Langerhans’ cells with the impor- 
tant function of antigen presentation express 
both MHC class I and MHC class II molecules 
with a key role in naïve T cells activation (14). 
Although there are several reports regarding skin 
manifestation in COVID-19 (15–17), it was hy-
pothesized that wounded skin might be a reser-
voir for SARS-CoV-2 and can therefore enhance 
pathogenicity of COVID-19 (18), but this could 
only be speculation. As for the mucous mem-
branes, especially the mucosa of the respiratory 
tract, they are loaded with cells that express the 
ACE-2 receptors which facilitate entry of the vi-
rus into cells (19). A single-cell RNA sequencing 
showed that the prevalent ACE-2 expressing cells 
are type II alveolar cells (AT-II) and to a lesser 
extent type I alveolar and endothelial cells, mac-
rophages, and fibroblasts (20). The study also 
revealed a significant difference between ACE-2 
expressing and non-expressing AT-II cells, in the 
first ones the viral-related processes linking to 
the viral life cycle and replication being over-ex-
pressed (20). Indeed, a minimally invasive lung 
biopsy on three patients who were infected with 
SARS-CoV-2 revealed the proliferation of AT-II 
with virus particles inside the cytoplasm, shed-
ding of the virus, and cell necrosis, however, less 
severe than observed during the SARS infection 
(21). Besides the lung, other cell types in the di-

gestive, renal, and nervous systems also express 
ACE-2, thus acting as additional reservoirs and 
gates for virus infection. MHC class I downreg-
ulation by ORF8 protein has been reported as 
an escape strategy of SARS CoV-2 which may 
affect the antigen presentation and assist the vi-
ruses to escape from immune surveillance (22). 
On the other hand, genetic variability across the 
major genes of MHC-I and -II were predicted 
to affect susceptibility to and severity of SARS 
CoV-2 infection; vulnerable, but also protective 
haplotypes were calculated in silico studies ac-
cording to the binding affinity of 8-9 or 15-mer 
peptide derived from SARS CoV-2 peptidome 
(8,23).

Dendritic cells 
Dendritic cells (DCs) are the professional anti-
gen presentation cells (APC), having the major 
role to present various antigens in the context 
of MHC class I and MHC class II to the naïve 
lymphocytes into the area of the lymph nodes 
(14), thus activating and modulating the im-
mune response. Dendritic cells are found in two 
forms: conventional and plasmacytoid, the latter 
ones are an important source of type-I interferon 
during the viral infection (24). The conventional 
DCs are present in the lymphoid organs (spleen, 
thymus, and lymph nodes) as resident and mi-
gratory DCs which are responsible for the an-
tigen presentation to naïve T cells, ensuring the 
connection between innate and adaptive immune 
response (24). 
After activation, DCs become a reservoir of 
many cytokines, including IFNs and TNF-α; 
however, the spectrum of cytokines produced 
vary depending on the nature of the stimuli (24). 
In relation to SARS-CoV-2 infection, the DCs 
from the respiratory airways are both guards and 
victims at the same time, since the interstitial 
pulmonary DCs express both ACE-2 receptor 
for virus entry and CD147, the novel described 
receptor for S protein (24,25). Aside from the 
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antigen presentation, these cells could serve also 
as a virus reservoir after the activation of viral 
escape mechanisms. 
Furin, a proteolytic enzyme found in abundance 
in the lung was reported to enhance cleavage 
at the furin-like S2’ site of SARS-CoV-2 (26). 
Consequently, it becomes a host factor that can 
enhance the pathogenesis of the SARS-CoV-2. 
Indeed, the virus up-regulates furin production 
in monocyte-derived DCs, despite the low ex-
pression of the entry receptors on these cells 
(24,27). In severe COVID-19 cases, the virus 
was reported to exert negative effects on DCs 
in several different ways: reduction of viability 
and functions of DCs (27), increased numbers 
of conventional DCs compared with plasma-
cytoid DC, impaired expression of co-stimula-
tory CD86 molecules (28), and reduced type I 
and III IFNs response in infected cells (27,29), 
leading to improper activation of the immune 
response.

Monocytes and macrophages 
Monocytes and macrophages have been known 
as important inflammatory cells in the alveoli, 
along with neutrophils, generating exudate and 
interstitial fibrosis. Additionally, these inflam-
matory cells were found in the inflammatory 
infiltrate in the heart as well in the intestinal mu-
cosa of severe COVID-19 (21). A study of the 
behavior of the monocyte/macrophage infected 
differentially with MERS and SARS-CoV re-
vealed that only MERS is capable of replication 
in macrophages with attenuated antiviral IFN re-
sponse, increased induction of pro-inflammatory 
mediators and cytokine storm (30). On the other 
hand, there was an increase in the expression of 
MHC class I and co-stimulatory molecules that 
were more prevalent in MERS than SARS-CoV 
infection and which mirrored the clinical out-
come (30). The cytokine storm is produced af-
ter the uncontrolled release of pro-inflammatory 
cytokines from lymphoid and myeloid line cells 

(31). At the beginning of the infectious process, 
monocytes, a source of macrophages at the site 
of infection, were the main producers of IL-6 un-
der TLRs stimulation (32). Macrophages possess 
CD 126 marker which is a receptor for IL-6, a 
cytokine with pleiotropic activities, mediated ei-
ther by classic (via a membrane-bound receptor 
on different cell lines) or by trans-signaling (via 
soluble receptors generated by limited proteoly-
sis) pathways (32). In addition, IL-6 is a potent 
pro-inflammatory cytokine with additional an-
ti-inflammatory properties mediated by different 
signaling pathways. The anti-inflammatory ac-
tions were mediated via membrane-bound recep-
tors while the pro-inflammatory responses were 
mediated via soluble IL-6R (32). Interestingly, 
IL-6 gene polymorphisms were found to gener-
ate greater shedding receptors under the action 
of proteases and a greater soluble form of IL-6R 
that act as a buffer for systemic effects of IL-6 
(33,34). The review published by Martinez et al. 
depicted the role of the monocyte/macrophage 
cells in all stages of COVID-19, from pre-in-
fection and early stage of infection when the co-
morbidities that alter the macrophage/monocyte 
dictate the disease outcome from the very begin-
ning, until the recovery stage when these cells 
act as scavenger cells and promote tissue repair 
(35). The pro-resolving mediators produced 
under M2-phenotype actions had the main role 
to limit inflammation and restore homeostasis. 
Between the two extremities, there are several 
key points with the commitment of monocytes 
and macrophages to modulate immune host re-
sponse and clearance of the virus. Chemokines 
produced by macrophages during the initial im-
mune response attract more inflammatory cells 
(polymorphonuclears, monocytes) at the infec-
tion site, while IL-6 induces hepatic synthesis of 
acute-phase reactants (35). In the severe forms 
of COVID-19, there is a profound dysregulation 
of immune response with neutrophilia, lymph-
openia, a decrease of non-classical/secretory 
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monocytes (CD14-CD16+) due to their recruit-
ing in the lung (36) and altered production of 
mediators which were released by macrophages/
monocytes. The hyper-inflammatory syndrome 
was often accompanied by a hyper-coagulability 
state driven by procoagulants from macrophages 
(37). The infection of monocytes and macro-
phages with SARS-CoV-2 did not induce a cyto-
pathic response, but up-regulated expression of 
IFNα in monocytes and expression of CD163+ 
with M2-phenotype switch in macrophages (38). 
These activities were associated with the induc-
tion of immune paralysis (38). Spleen and lymph 
node macrophages ACE-2+ and CD196+ were 
found to be infected with SARS-CoV-2, since 
the nucleocapsid materials were found from im-
munofluorescent staining (39), thus contributing 
to the spread of the virus (40).

Natural Killer cells
Natural killer (NK) cells which express both 
inhibitory and stimulatory receptors on their 
surfaces are important players in antiviral and 
antitumoral protection. Interestingly, integration 
of these opposite signals is crucial to the preven-
tion of detrimental effects due to the self-acti-
vation of NK. Through interactions with IL-15/
IL-15R alfa which are expressed on DCs, NK 
cells would provide a pivotal role in modulat-
ing the adaptive immune response (41). NK cells 
also interacted with other non-specific immune 
cells like neutrophils or macrophages, or by sol-
uble mediators, i.e., TNFα, to produce IFN-γ 
and IL-18, important cytokines for NK-Mac-
rophage-DCs interaction (42). In COVID-19 
severe patients CD56-CD16+ NK subsets were 
significantly higher and in asymptomatic pa-
tients CXCL2, CXCR4 and IFNγ were upreg-
ulated in CD56++CD16- NK cells (43). Aside 
from generating direct cytotoxic effects on vi-
rus-infected cells, NK cells were also involved 
in antibody-dependent cytotoxicity mediated by 
anti-S antibody, for instance (44). During the se-

vere forms of SARS-CoV-2 infection, lympho-
penia became evident and it was associated with 
a reduced number of cytotoxic T-cells as well as 
NK cells. The mechanisms were probably due 
to organ sequestration (45) and/or cell exhaus-
tion (46). Consequently, NK lymphopenia was 
frequently associated with prolonged viral shed-
ding and low survival rates (47).

Neutrophils
Neutrophils, cells from the myeloid lineage, are 
important for the innate immune response to 
infections. Against bacterial infections, neutro-
phils perform clearance of pathogens and debris 
using a variety of mechanisms i.e., phagocytosis, 
cytokine and chemokine production, oxidative 
burst, or neutrophil extracellular traps (NETs) 
formation (48,49). Against viral infections, the 
mechanisms are less clearly understood. How-
ever, they are involved in creating the NETs 
(50) after diverse TLRs stimulation (51) as an 
attempt to limit the infection. The NET structure 
made by activated neutrophils and mediated by 
reactive oxygen species (ROS) and mitogen-ac-
tivated protein kinase (MAPK) have the main 
role of capturing bacteria, fungi, and viruses 
(51), thus limiting the pathogenic processes. In 
addition, NETs exert several antipathogenic fac-
tors, some of them acting for virus inactivation, 
like myeloperoxidase (MPO) or defensins (51). 
However, there is a double-edged sword effect, 
since the NET formation is a potential generator 
of proteolytic enzymes or autoantibodies, it may 
contribute to the development of autoimmune 
diseases (52). A recent investigation revealed a 
strong link between SARS-CoV-2 infection and 
exacerbation of viral-induced NET formation 
(53). The findings illustrate important contribu-
tions of NETosis dysregulation in the innate im-
mune system towards the pathogenesis of severe 
COVID-19 and hyper-inflammation (49,54). 
The overproduction of NETs in regard to virus 
clearance by hyperactivated neutrophils may 
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trigger mechanisms with harmful effects, as de-
scribed in table 1.
The specialized innate immune receptors, patho-
gen recognition receptors (PPRs) which are 
found on the innate cells, including neutrophils, 
have the central role in host-pathogen interac-
tion. After TLRs stimulation, massive produc-
tion of pro-inflammatory cytokines and chemo-
attractant mediators occur increasing the influx 
of the immune cells at the site of infection in 
graded response to the severity of the infection 
(49). There are some assertions that neutrophils 
and other granulocytes act as APCs under dif-
ferent cytokine exposure (especially IFNγ) or 
via direct interactions with T cells. By enhanc-
ing the surface expressing or de novo synthesis 
of MHC class II, CD80, and CD86 molecules 
which are involved in antigen presentation (63), 
the neutrophils are the new arrival member in 
APCs class, even though their precise activities 
still need to be discovered. Moreover, these cells 
seem to have the ability to modulate the adaptive 
immune response including viral infections (64).

Eosinophils
Aside from their pro-inflammatory role, eosino-
phils also generate eosinophil extracellular traps 

(EETs) in reaction to the presence of infections 
or other inflammatory conditions in the respi-
ratory tract (65). Eosinophils, like neutrophils, 
express various TLRs e.g TLR6, TLR7-10, with 
a lower expression on eosinophils except for 
TLR7 which was found as the main culprit for 
eosinophils activation after PAMP interactions 
(66). The up-regulation of TLR7 and TLR8 in 
eosinophils under the influence of interferon 
during viral infection could be involved in ex-
cessive inflammation (66). However, the eo-
sinopenia that accompanied severe forms of 
COVID-19 is unlikely to be involved in disease 
outcome, instead might be a complementary fact 
(67). A recent review emphasizes the roles of eo-
sinophils as APCs (63) and as virus-recognition 
cells, through several TLRs, especially TLR7, 
endosomal pathogen-recognition receptors that 
recognize RNA viruses, such as coronaviruses 
(67). A study on fatal cases of COVID-19 re-
veals that severe eosinopenia was a feature of 
the fatalities (68). On the other hand, the num-
bers of eosinophils and lymphocytes were pos-
itively correlated regardless of the disease se-
verity (69). Although there was not enough data 
on the role of eosinophils in the pathogenicity 

Table 1. Main harmful effects from over-production of neutrophil extracellular traps (NETs)
Mechanisms Side effects References
Procoagulant effects

Prothrombotic effects

Clot formation independent of XI, XII, or VII factors; in-
creased clot density; resistance to lysis.

(55)

Increased plasma levels of nuclear DNA, MPO, and nucleo-
somes (derived from inflammatory leucocytes);
platelet activation and fibrin formation propagation.

(56,57)

Disseminated intravascu-
lar coagulation (DIC)

DIC in septic shock patients possible through platelet traps 
and microvascular occlusions.

(58)

Inflammation Cytokine production in different tissues regardless of the in-
duction stimuli.

(59,60)

Auto-inflammatory pro-
cesses

Stimulation of auto-antibody production against MPO, 
DNase, histone, neutrophil elastase, peptidyl-arginine deimi-
nase type IV (PAD4).

(61,62)
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of COVID-19, decreased number of eosinophils 
was a predictor of disease severity (70,71).

Molecules of the innate immune response 

Besides innate immune system cells, there are 
molecules that also belong to the non-specific 
immune response. These molecules are import-
ant in the initial steps for the control of viral 
multiplication/replication, for maintenance of 
antiviral environment and enhancement of dis-
ease resolution. 

Complement system
Complement activation is an important feature 
of pathogenesis and disease severity during in-
fection with SARS-CoV-2, although the exact 
mechanisms of specific antiviral response re-
main to be explained. It is well known that the 
complement system together with PRRs are inti-
mately engaged in immune response, especially 
in severe systemic inflammations. Their involve-
ment was clearly demonstrated in C3-/- deficient 
mice which expressed severe lung inflammation 
and respiratory dysfunction compared with that 
in normal mice for the same viral load (72). Re-
garding the SARS-CoV-2 infection, over-activa-
tion of the complement is driven by N-protein 
throughout the lectin pathway which was acti-
vated by the mannan-binding and lectin-associ-
ated serine protease (MASP-2) (73). Like many 
other molecules involved in humoral immune re-
sponse, the complement system has a dual role, 
one beneficial for protection against pathogens 
and one detrimental by hyper-inflammation. The 
detrimental effect is mainly promoted by the C3a 
and C5a fragments which are generated during 
the normal activation process. These anaphyla-
toxins activate immune cells having a chemoat-
tractant effect on neutrophils and monocytes at 
the site of infection, thus aggravating the lesions 
and prompting the release of cytokines. There is 
a close link between complement activation and 

network extracellular traps which were generat-
ed during NET-osis (74) since the NET contains 
several complement factors together with free 
DNA, myeloperoxidase (MPO), and histones. 
Initially, the NET-osis acts as an adjuvant in host 
antipathogen defense. However, an excessive 
NETs formation drove the hyper-inflammation 
and hypercoagulability processes (75). There is 
a close relationship between complement acti-
vation and coagulopathy because the membrane 
attack complex (MAC) which was the final stage 
of the complement activation was an important 
factor for coagulation cascade activation via the 
Tissue Factor-activated pathway or contact acti-
vation (76). Excessive complement activation in 
lung tissues and high levels of serum C5a were 
observed in severe forms of SARS-CoV 2 infec-
tion (73). Uncontrolled complement activation 
also contributed to the induction of hypercoagu-
lability status, apart from the disseminated intra-
vascular coagulopathy. In these cases, D-dimers 
could be a reliable tool for patient evaluation and 
a cutoff of 2.0 µg/mL on admission predicts the 
in-hospital mortality of COVID-19 patients (77).

Toll-Like Receptors 
Toll-Like Receptors (TLRs) belong to a family 
of membrane and endosomal molecules with re-
ceptor activities for sensing pathogens, named 
Pathogen Recognition receptors (PRRs). Patho-
gen Associated Molecular Patterns (PAMPs) 
and Danger Associated Molecular Patterns 
(DAMPs), mostly cellular debris generated af-
ter cell destruction, are some of the molecules 
recognized by TLR. In humans, there are ten 
members of TLRs which are expressed on var-
ious innate or adaptive immune cells. The main 
functions of TLRs are to recognize different 
pathogen patterns: bacterial lipopolysaccharides 
(LPS), flagella, cilia, bacterial unmethylated 
DNA, or viral structures like dsARN or ssARN 
(78). An in silico study revealed significant in-
volvement of TLR1, TLR4, and TLR6 in bind-
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response via robust production of IL-6, TNF-α, 
and IL1β. The proper production of type I IFN 
was reported to be essential for the antiviral re-
sponse while impaired IFN I production (both 
IFN-α and β) was associated with high viral 
load and excessive inflammatory response, via 
increased TNF α and IL-6 production and signal-
ing (86). The action of type III IFN was mainly 
limited to the protection of the epithelial barri-
ers, without a systemic activation of the immune 
response (85). While the adequate IFN synthesis 
was important at the very beginning of the infec-
tion in order to modulate the host-virus interac-
tion and to reduce the viral load, IFN deficit was 
followed by severe outcomes of the disease (87), 
probably due to high viral load and impaired 
virus clearance (88). Type-I IFN synthesis was 
significantly reduced in infected macrophages 
leading to impaired viral control and exacerbat-
ed pro-inflammatory response (89). However, 
viruses normally possess multiple mechanisms 
to evade immune response: from inadequate rec-
ognition by PRRs to inhibition of IFN synthesis 
or signaling suppression (90). In addition, sev-
eral structural and non-structural SARS-CoV-2 
proteins inhibit IFN synthesis by interacting with 
different signaling pathways (90). However, ad-
equate modulation of IFNs secretion is a driving 
factor in the immune response. Therefore, their 
dampened secretion during the early stages of 
infection led to an ineffective clearance of the 
virus, while an excessive and extended IFNs 
production during a viral infection promoted the 
hyper-inflammatory syndrome (91), both situa-
tions being important contributors to serious dis-
ease outcomes. Bastard et al. found neutralizing 
IgG autoantibodies against type I IFN in 10% 
of the patients with life-threatening COVID-19 
pneumonia (92).

Cytokines 
The cytokine storm is a critical characteristic of 
COVID-19. The expression is due to the over-

ing to S-protein of SARS-CoV-2 (79), among 
them, TLR4 showed the most powerful interac-
tion (78). After TLR7 and TLR8 activation by 
viral ssARN, several pathways were activated 
downstream, leading to impaired IFNs synthesis 
and increased production of pro-inflammatory 
cytokines and pulmonary lesions (80). Generat-
ing DNA network consecutive to NET-osis ac-
tivation is dependent on TLR4 binding to viral 
proteins, while activation of TLR 2 and TLR 
4 by DAMPs which serve as endogenous anti-
gens like high-mobility group box 1 (HMGB1), 
induce the synthesis of pro-inflammatory cyto-
kines and chemokines that consequently activate 
the immune response (81). Another viral sens-
ing receptor important in COVID-19 pathology 
was shown to be TLR9, the activation and un-
controlled stimulation of which engaged gene 
transcription with excessive cytokine production 
and immune cell activation (82). All of them 
contribute to disease severity and unfavorable 
outcomes. In a nested case-control study, a more 
severe variant of COVID-19 was found in males 
with loss-of-function mutation of TLR7 with a 
reduction in the IFNs response (83). Sex differ-
ences in innate immune response could be ex-
plained by higher expression of TLRs in women 
due to the fact that TLR genes are located on X 
chromosomes (84).

Interferons (IFNs)
IFNs are a constellation of cytokines that be-
longs to the same family with slightly different 
actions, receptors, kinetics, and effects. A recent 
review indicates the importance of IFNs in both 
the antiviral defense and the exacerbated pro-in-
flammatory syndrome during the COVID-19 
pathology (85). Type I IFN synthesis can be in-
duced in many nucleated cells after the virus and 
their PAMPs are recognized by the host pattern 
recognition receptors (PRRs) or TLRs, especial-
ly TLR3, TLR7, and TLR9. These interactions 
would generate an increased pro-inflammatory 
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production of pro-inflammatory cytokines by the 
immune cells in response to SARS-CoV-2 infec-
tion and is the main pathogenetic mechanism to 
cause multiorgan failures and severe evolution. 
While a reasonable production of the inflam-
matory mediators is required in order to restore 
immune homeostasis, an exacerbated response 
would cause serious dysfunctions and severe 
inflammatory syndrome. Interleukine 6 (IL-6), 
along with TNFα and IL-1, are considered the 
major pro-inflammatory cytokines involved in 
the pathogenesis of COVID-19 (93,94), the syn-
thesis of which is rapidly induced after the virus 
is recognized by the host’s PRRs.
In severe form of COVID-19, the expression of 
IL-1 along with IL-1R and associated signal-
ing molecules are highly activated (95). Being 
a pleiotropic cytokine, IL-6 has dual functions. 
Protective effects are mediated by promoting tis-
sue repair (96), phagocytic neutrophils survival 
(97), optimal T cell response, and prevention 
of severe lung damage during viral infections 
(98,99), while detrimental effects by modulating 
differentiation of Th2 and Th17 phenotype over 
Th1 (100), attracting neutrophils and pro-inflam-
matory macrophages towards sites of infection 
to aggravate tissue injury (101,102). In an ex-
tensive cohort study on dynamic measurement 
of serum IL-6 levels, the results indicate a cor-
relation between IL-6 and severe evolution of 
the disease, and a concentration over 37.65 pg/
ml was a highly specific predictor for in-hospital 
death (103). Early measurement of plasma IL-6 
could serve as a potential predictor of hypox-
emia which would require oxygen therapy (104) 
or mechanical ventilation (105). During disease 
recovery, serum IL-6 was found to be lower 
compared with the disease period with a signifi-
cantly negative correlation between plasma IL-6 
levels and the total number of T cells, CD4+, and 
CD8+, since IL-6 along with other pro-inflam-
matory cytokines interfere with cell proliferation 
and survival (106). Plasma levels of IL-6 and 

TNFα were increased in severe cases and were 
independent predictors of disease severity (107). 
Additionally, the TNF-alfa levels were higher 
in patients with different comorbidities, like hy-
pertension, diabetes mellitus, or kidney disease. 
IL-6 and IL-8 but not TNFα were correlated with 
the necessity for ventilation (107). Apart from 
TNFα which was correlated with markers of tis-
sue damage, other pro-inflammatory cytokines 
were in concordance with classical inflammatory 
markers and oxygen saturation (107).

Acute phase reactants
Under the influence of pro-inflammatory cyto-
kines in COVID-19 some proteins denoted acute 
elevation of C-Reactive Protein (CRP), serum 
amyloid A (SAA), ferritin or complement factors 
(108). In addition, C3 and C4 levels declined as 
the disease evolve while others denoted a nega-
tive evolution as in the case of pre-albumin and 
albumin, representing the negative arm of acute-
phase reactants (108). The induction or suppres-
sion of these proteins was under the influence 
of - cytokines, mainly IL-6 (109). The plasma 
levels of CRP and ferritin were positively cor-
related with each other and with D-dimers, a 
marker of secondary fibrinolysis (110). An early 
pandemic study revealed a strong correlation be-
tween CRP and albumin with virus-induced pul-
monary lesions and disease severity (111). Fer-
ritin, a primary marker for iron metabolism, has 
been well documented to be an important acute 
phase reactant in COVID-19 patients (112). The 
plasma levels of ferritin were a strong predictor 
of disease severity and independently associated 
with mortality (112,113). Similarly, the SSA is 
positively associated with disease severity and 
patient mortality (114). 
In order to evaluate and monitor the evolution of 
infected patients, a panel of laboratory tests has 
been recommended (115). These tests consist-
ed of biochemical markers to assess the cardiac 
(Creatine Kinase, Troponin, and NTpro-Brain 



Revista Română de Medicină de Laborator Vol. 29, Nr. 3, Iulie, 2021264

Natriuretic Peptide), hepatic (AST/ALT, LDH, 
bilirubin, Prothrombin Time), and renal function 
(creatinine, Blood Urea Nitrogen) as well some 
tests for inflammatory response estimation. 
Some of these inflammatory markers mirror the 
innate immune response and have IVD regula-
tions, being used daily for monitoring. CRP and 
ferritin are valuable markers for the estimation 
of the inflammatory response, while procalci-
tonin (PCT) is a good predictor for sepsis during 
SARS-CoV-2 infection, D-dimers for DIC in 
septic shock. For IL-6 determination, there are 
some useful IVD tests for the “cytokine storm 
syndrome” evaluation and estimation of the util-
ity of anti-IL-6 therapy, while for TNFα or other 
cytokines the IVD certified tests are limited.

Future directions and conclusions

The innate immune system needs proper func-
tioning, as the first line of defense against infec-
tions, to ensure adequate prevention and rapid 
healing. The innate immune system has a dual 
function, it is necessary for the activation of an-
tiviral host defense and eradication of the infec-
tion, yet hyperactivation during the later stages 
contributes to hyperinflammation. Thus, an un-
balanced response either under- or over-stimu-
lation of this system will lead to uncoordinated 
response, and unfavorable disease outcomes. A 
failure in the modulation of the initial innate im-
mune response with hyperactivation and aggres-
sive cytokine release may be one of the explana-
tions for the appearance of severe forms of the 
disease in young people without comorbidities. 
The laboratory tools addressing the integrated 
investigations of innate arm of the immunity, 
from the neutrophils, lymphocytes subclasses 
including NK cells, the complement system, IFN 
response or acute phase reactants, and IL-6 mon-
itoring, to the state-of-the-art gene sequencing 
will offer a better perspective on mechanisms in-
volved in limiting viral pathogenicity and patient 

evolution during the SARS-CoV-2 infection. 
Consequently, therapeutic approaches targeting 
the very first immune response in COVID-19 or 
gradually in different compartments of the in-
nate system, in order to maintain the balance of 
pro- and anti-inflammatory stimuli, are of vital 
importance.
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