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Neutrophil extracellular traps (NETs): Relevance to thrombosis 
and hemostasis. A narrative review
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ABSTRACT
Background: Neutrophil extracellular traps (NETs) are released by neutrophils and comprise web-like structures that play a vital 
role in fighting infections. NETs have also been involved in various thrombosis and hemostasis mechanisms. This review aims to 
outline the current understanding of NETs in these processes, their mechanisms of action, their clinical importance, and potential 
treatment strategies to counteract adverse events.
Methods: A search of the literature was conducted up to June 2024 via PubMed, Scopus, Google Scholar, and Web of Science, 
with a focus on studies linking neutrophil extracellular traps to thrombosis and hemostasis.
Results: NETs have been directly implicated in thrombosis by activating platelets, providing a substrate for thrombus formation, 
and directly activating coagulation. NETs are associated with venous thromboembolism, arterial thrombosis, and cancer-related 
thrombosis, among other thrombotic events. NETs can also support clot formation and hemostasis at sites of vascular damage. 
NETs could serve as potential biomarkers for thrombotic events, and various strategies are being explored to reduce their ad-
verse events, such as inhibiting their formation, degrading extracellular DNA, and modifying associated proteins.
Conclusions: An improved understanding of NET-mediated thrombosis and hemostasis processes might aid in the development 
of effective strategies to prevent life-threatening thrombus formation and aid in the prevention of thromboembolic diseases, 
ultimately benefiting affected patients.
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INTRODUCTION

Thrombosis is a pathological process characterized by the 
formation of blood clots (thrombi) in blood vessels [1]. Al-
though normal hemostasis is necessary to control the risk 
of bleeding, abnormal thrombus formation can instead 
lead to adverse events such as deep vein thrombosis, 
pulmonary embolism, heart attack, and stroke [2]. Con-
ventionally, thrombosis has been conveniently conceptu-
alized in terms of platelets, coagulation factors, and en-
dothelial cells as the major and most critical participants 
in this process [3]. However, emerging evidence indicates 
that more attention should be given to the role of neu-
trophils, particularly arising neutrophil extracellular traps 
(NETs), in thrombus formation and hemostasis [4, 5].

Neutrophil extracellular traps (NETs) were first de-
scribed in 2004 by Brinkmann et al. who reported that 
activated neutrophils release web-like structures com-
posed of DNA, histones, and granular proteins that trap 

and kill pathogens [6]. Since then, NETs have gained rec-
ognition not only for their role in host defense, but also 
for their involvement in various pathological conditions, 
including thrombosis and inflammation.

Neutrophils are the most abundant white blood cells 
and are recognized for their innate immune functions, 
such as phagocytosis and degranulation [7]. Recent 
discoveries have revealed that neutrophils can also re-
lease NETs in response to various stimuli, including DNA, 
histones, and antimicrobial proteins [8]. NETs are ex-
tracellular web-like structures formed by decondensed 
chromatin, granule proteins, and neutrophil elastase re-
leased by a neutrophil in a defensive response against 
pathogens [6, 9]. Initially, identified for pathogen cap-
ture, NETs have emerged as key players in thrombosis 
and hemostasis [5, 10].

NETs influence thrombosis through multiple pathways. 
They directly activate platelets, facilitating their adhesion 
and aggregation at sites of vascular injury [11]. Addition-
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ally, NETs act as scaffolds for coagulation factors, promot-
ing fibrin formation and enhancing clot stability [12]. 
Moreover, NETs express tissue factors, thereby facilitat-
ing the initiation of the coagulation cascade and thus 
promoting thrombus formation [13,14]. 

Histones and neutrophil elastase within NETs further 
increase their procoagulant properties, linking them to 
various thrombotic disorders, including venous throm-
boembolism, arterial thrombosis, and cancer-related 
thrombosis [15,16]. In addition to promoting clot forma-
tion, NETs play diverse roles in physiological and patho-
logical conditions [17].

NETosis

NETosis is the process of the formation of neutrophil ex-
tracellular traps (NETs), which are extracellular web-like 
structures composed of DNA, histones, and antimicro-
bial proteins [18]. NETosis is triggered by a number of 
factors, such as pathogens, inflammatory cytokines, ac-
tivated platelets, and cholesterol crystals [19-22]. 

NETosis is a process that is accompanied by certain 
changes in the morphology and biochemistry of neutro-
phils. These alterations include nuclear decondensation, 
chromatin condensation, and the mixing of nuclear and 
cytoplasmic elements [23.24]. Finally, due to cell mem-
brane disruption, NETs are released into the extracellular 
compartment [25,26].

NETs are involved in the initiation and growth of 
a thrombus and in its stabilization and propagation. 
Platelets adhere to and aggregate on them, coagula-
tion factors are activated, and fibrin formation is stimu-
lated [4, 27-29].

This has led to the investigation of the therapeutic po-
tential of NETs because of their contribution to throm-
bosis. Approaches concerning NET production, degra-
dation, and related proteins are being explored [30]. 
Additionally, NETs are being investigated for their po-
tential use in the diagnosis of thromboembolic diseases, 
owing to their occurrence in thrombi and their link to 
thrombotic complications [4, 31,32].

Given the expanding knowledge of NETs in throm-
bosis, this review addresses the gaps in understanding 
their multifaceted roles, interactions with coagulation 
components, and therapeutic targeting. Previous studies 
have often overlooked the broader role of NETs beyond 
antimicrobial defense, especially in thromboembolic 
disorders. By providing a comprehensive synthesis, this 
study aims to bridge this gap by exploring NET-targeting 
strategies and their potential diagnostic and therapeu-
tic applications. Improved management of thrombotic 
complications may emerge from ongoing research into 
NET involvement in these processes.

METHODS

An initial search involving various bibliographic databases 
was performed via PubMed, Scopus, Springer, and Web of 
Science to evaluate articles that focused on NETs, throm-
bosis, and hemostasis. The search terms used included 
MeSH terms for "neutrophil extracellular traps", "NETs", 
"thrombosis", "hemostasis", "venous thromboembo-
lism", "arterial thrombosis", and "platelet activation", 
"coagulation", "fibrinolysis", "cancer-associated throm-
bosis", "antiphospholipid syndrome", "DNA", "histones", 
"elastase", and "DNase". The search included all the arti-
cles that were published in English until June 2024.

The criteria for study inclusion covered the following 
topics: NETs and thrombosis or hemostasis, NETosis and 
its involvement in thrombus formation, the clinical as-
sociation of NETs with thrombotic disorders, or possible 
pharmacotherapeutic approaches targeting NETs. The 
exclusion criteria included nonpeer-reviewed papers, 
studies that investigated only the antimicrobial proper-
ties of NETs and data unrelated to thrombosis or hemo-
stasis, or studies that did not contain any new data (i.e., 
reviews, editorials, or commentaries).

Data concerning the study type (experimental and ob-
servational, clinical trial), findings concerning the func-
tion and role of NETs in thrombosis and hemostasis, the 
mechanisms by which NETs might influence platelets, 
clotting factors, and endothelial cells, the specific impact 
of NETs on different thrombotic disorders, and the use 
of potential treatments targeting NETs in potential treat-
ment were sought in the selected articles.

The quality of the included studies was assessed via 
standard criteria for research quality issues, such as 
study design, sample size, methodology, and orientation 
of the produced outcomes to the objectives of the pre-
sented review. This review identified 59 eligible studies 
on the relevance of neutrophil extracellular traps (NETs) 
to thrombosis and hemostasis.

RESULTS AND DISCUSSION

A total of 1,114 articles were initially retrieved through 
the database search. After screening for relevance and 
removing duplicates, 634 articles were deemed eligible. 
Following the application of predefined eligibility crite-
ria, 164 publications were excluded, leaving 59 studies 
included in the review.

Quality assessment

The literature search identified 59 eligible studies on 
NETs and thrombosis/hemostasis. The studies were as-
sessed for quality, considering research design, sample 
size, methodology, and alignment with review objec-
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tives. These studies provide insights into the roles of 
NETs in thrombosis and hemostasis; their impact on 
platelets, clotting factors, and endothelial cells; and their 
relevance to thrombotic disorders.

The role of NETs in hemostasis

The role of NETs in hemostasis is complex and involves 
the interplay of their procoagulant and anticoagulant ef-
fects. Some studies have established the connection of 
NETs with the coagulation and innate immune systems 
and their functions in the initial response to injury, in-
cluding hemostasis [33,34]. NETs come into contact with 
platelets, increasing their activation and aggregation, 
which is vital for the formation of platelet plugs in the 
initial stage of hemostasis [35]. Additionally, NET pro-
teases such as elastase can activate coagulation factors, 
resulting in the formation of thrombin and fibrin, which 
enhances clot stability [36,37].

 Each of the NETs, DNA, histones, and elastase, has its 
own hemostatic mechanism. DNA activates coagulation 
of blood through the intrinsic system, especially in con-
ditions where there is cell damage [38]. DNA also par-
ticipates in thrombin-dependent activation of factor XI 
and enhances the tissue factor-dependent coagulation 
pathway [39]. Furthermore, DNA exhibits antifibrinolyt-
ic activity by increasing the formation of the tPA-PAI-1 
complex and decreasing the conversion of plasminogen 
to plasmin [40]. The concentration of DNA in NETs in 

thrombi affects thrombolysis; higher DNA concentra-
tions support faster thrombolysis, whereas lower con-
centrations may support fibrinolysis [41].

Histones promote coagulation in vitro by activating co-
agulation factors and, in vivo, compromise the anticoagu-
lant endothelial barrier, exposing prothrombotic proteins 
like tissue factor and activating platelets. The prothrom-
botic effects of endothelial injury predominate leading to 
thrombosis. [42]. Histones also activate neutrophils, lead-
ing to increased NET formation, and interact with platelet 
membranes to activate them [43]. Additionally, histones 
increase the rate of prothrombin autoactivation and de-
crease the rate of thrombin inactivation by antithrombin 
[44]. They stabilize clots by binding to fibrinogen and 
fibrin and can interfere with thrombin–thrombomodu-
lin interactions, which in turn affects the generation of 
anticoagulant-activated protein C (APC) [10].

Elastase is the major protein constituent of NETs that 
influences clotting and fibrinolysis. It enhances fibrinoly-
sis by inhibiting α2-PI, which has a direct fibrinolytic ef-
fect, and increasing the transformation of plasminogen 
into miniplasmin, which has high fibrinolytic activity 
[45]. Nevertheless, elastase also has procoagulant activ-
ity. It breaks down and inactivates coagulation inhibitors, 
namely, tissue factor pathway inhibitors, thrombomodu-
lin and antithrombin, implying that the subendothelial 
surface is more thrombogenic [46,47]. Table 1 shows the 
pathogenesis of NETs in thrombosis and hemostasis.

Table 1. The pathogenesis of NETs in thrombosis and hemostasis
Component Role in Hemostasis References

NETs (general)

•	 NETs interact with platelets, increasing their activation and aggregation, essential for 
forming platelet plugs during the initial hemostatic response.

•	 NET proteases, such as elastase, activate coagulation factors, enhancing thrombin and 
fibrin formation to stabilize clots.

[34- 38]

DNA

•	 Activates coagulation via the intrinsic pathway, especially during cell damage.
•	 Participates in thrombin-dependent activation of factor XI and enhances the tissue factor-

dependent coagulation pathway.
•	 Exhibits antifibrinolytic activity by increasing the formation of the tPA-PAI-1 complex and 

reducing plasmin generation.
•	 Higher DNA concentrations in NETs promote faster thrombolysis, while lower concentra-

tions may favor fibrinolysis.

[39- 42]

Histones

•	 Promote coagulation in vitro by activating coagulation factors.
•	 Compromise the anticoagulant endothelial barrier in vivo, exposing prothrombotic pro-

teins (e.g., tissue factor) and activating platelets.
•	 Activate neutrophils, enhancing NET formation, and interacting with platelet membranes 

to stimulate activation.
•	 Increase prothrombin autoactivation and reduce thrombin inactivation by antithrombin.
•	 Stabilize clots by binding fibrinogen and fibrin and interfering with thrombin–thrombo-

modulin interactions, affecting anticoagulant protein C (APC) generation.
•	 The prothrombotic effects of endothelial injury predominate, leading to thrombosis.

[10, 42- 45]

Elastase

•	 Enhances fibrinolysis by inhibiting α2-PI and promoting the conversion of plasminogen to 
miniplasmin, which has strong fibrinolytic activity.

•	 Exhibits procoagulant activity by degrading coagulation inhibitors (e.g., tissue factor path-
way inhibitors, thrombomodulin, and antithrombin), making the subendothelial surface 
more thrombogenic.

[46- 48]

Abbreviations: α2-PI - α2-proteinase inhibitor, DNA - deoxyribonucleic acid, NET - neutrophil extracellular trap, PAI-1 - plasminogen activator inhibitor-1, tPA - tissue plasminogen activator.
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Arterial thrombosis

Arterial thrombosis, which forms the basis of myocardial 
infarction and stroke, has been described as the devel-
opment of a thrombus within an artery that blocks blood 
flow to tissues [48]. NETs are associated with arterial 
thrombosis through various processes, including the fol-
lowing. First, NETs form a structural framework that traps 
and activates platelets and stimulates platelet aggrega-
tion and, therefore, contributes to thrombus formation 
[4]. Additionally, NETs release anionic phospholipids 
such as phosphatidylserine, which bind to coagulation 
factors, hence strengthening the clot [38]. Moreover, 
NETs incorporate neutrophil elastase and cathepsin G, 
which can activate coagulation factors, increase throm-
bin generation, and increase fibrin deposition [49,50]. 

Studies have been conducted on human subjects and 
have provided important information on the involve-
ment of NETs in myocardial infarction. Acute myocardial 
infarction and NETs, which are markers of cell-free DNA, 
are associated with thrombotic events and adverse car-
diovascular outcomes [51,52]. Additionally, NETs have 
been identified in coronary thrombi obtained from pa-
tients with myocardial infarction, thus supporting their 
role in thrombus development [53,54]. These findings 
underscore the role of NETs in the pathogenesis of myo-
cardial infarction and the possibility of their use in treat-
ment and diagnosis.

Venous thrombosis

Venous thrombosis, deep vein thrombosis (DVT), and 
pulmonary thromboembolism (PTE) are outcomes of 
the formation of a thrombus within a vein, particularly 
in lower limb veins or pulmonary veins [55]. NETs have 
been detected in thrombi isolated from patients with 
VTE, and their involvement in this process has been indi-
cated [56,57]. Various studies focusing on humans have 
been useful in identifying the involvement of NETs in ve-
nous thrombosis.

Studies have shown that NETs contribute to venous 
thrombosis by activating factor XII and enhancing throm-

bin formation [56, 58]. Moreover, Neutrophil extracel-
lular traps (NETs) promote endothelial procoagulant ac-
tivity through multiple mechanisms. They induce tissue 
factor (TF) expression on endothelial cells, initiating the 
extrinsic coagulation pathway and thrombin generation 
[59]. Additionally, NET components such as histones 
and neutrophil elastase disrupt the endothelial antico-
agulant barrier by degrading thrombomodulin and the 
endothelial protein C receptor, leading to unchecked fi-
brin formation [60].  NETs also activate the complement 
cascade, creating a proinflammatory and prothrombotic 
feedback loop. These combined effects contribute to 
thrombus expansion and stabilization [12].Increased lev-
els of plasma cell-free DNA, a sign of NET formation, are 
also linked to the risk of VTE in humans [57].

Furthermore, NETs have been identified within fresh 
venous thrombi and are known to contribute to the 
genesis of post-thrombotic syndromes, which are fre-
quent sequelae of deep vein thrombosis [10]. Similar 
NETs have also been observed in patients who suffer 
from cancer-associated venous thromboembolism, 
where their contributions to the hypercoagulable status 
of cancer have been recognized [61].

The clinical significance of NETs in venous thrombosis 
is supported by their potential as biomarkers. The identi-
fication of NETs or their components in VTE may be use-
ful for the diagnosis and risk assessment of patients [32]. 
Moreover, the general circulatory cell-free DNA count or 
other NET-derived biomarkers can help assess the thera-
peutic outcome of anticoagulation therapy and, poten-
tially, the prognosis of a relapse [62]. Table 2 shows the 
mechanisms of NET-mediated thrombosis.

Therapeutic potential and biomarker role of NETs

The existing knowledge of NET involvement in thrombo-
sis and hemostasis has motivated the attempt to target 
NETs to treat thromboembolic diseases. Several strate-
gies are currently being researched, with the aims of in-
hibiting the formation of NETs, degrading extracellular 
DNA, and regulating NET-associated proteins.

Table 2. Mechanisms of NET-mediated thrombosis
Mechanism Description References

NET-mediated 
platelet activation

NETs activate platelets and provide a scaffold for their adhesion and ag-
gregation, promoting thrombus formation [4, 11, 19-22, 27-29, 36]

Tissue factor NETs express tissue factor, initiating the coagulation cascade. [13,14, 47, 48]

Procoagulant properties 
of NET components

DNA, histones, and elastase within NETs have procoagulant properties, 
enhancing thrombin generation and fibrin deposition [7, 18-22, 37-39, 42-48, 50-53]

Endothelial cell activation
NETs induce tissue factor expression on endothelial cells, disrupting the 
endothelial anticoagulant barrier by degrading thrombomodulin and 
the protein C receptor, leading to unchecked fibrin formation.

[12, 42, 59, 60]

Thrombus stabilization The DNA scaffold and associated proteins in NETs stabilize the thrombus 
structure, preventing its dissolution and promoting clot propagation. [4, 27-29]

Abbreviations: DNA - deoxyribonucleic acid, NET - neutrophil extracellular trap.
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In some studies, anti-NET therapeutic approaches 
have shown promising results. For example, neutraliza-
tion of peptidyl arginine deiminase 4 (PAD4), the en-
zyme that triggers NET release, by PAD4 inhibitors has 
been shown to reduce thrombosis in a clinical trial with 
patients with arterial and venous thromboembolism 
[63,64]. Additionally, neutrophil elastase has recently 
been identified as a possible antithrombotic target. 
Early-phase clinical trials have investigated neutrophil 
elastase inhibitors, such as GW311616A, for the man-
agement of DVT and PTE [65,66].

 Another therapeutic approach involves the degrada-
tion of extracellular DNA, which is one of the compo-
nents of NETs. Clinical studies have demonstrated that 
DNase-I treatment, which disaggregates the DNA scaf-
fold of NETs, enhances thrombus resolution in patients 
with overall deep vein thrombosis and pulmonary em-
bolism [67,68]. Moreover, the inhibitory role of histones 
by histone deacetylase inhibitors has been discovered as 
a treatment strategy. Early findings suggest that target-
ing histones might decrease the prothrombotic proper-
ties of NETs [69]. Table 3 summarizes the therapeutic 
strategies targeting NETs. In addition to targeting NETs 
with specific therapeutics aimed at counteracting their 
role in thrombus formation, NETs have the potential to 
act as biomarkers of thromboembolic events. The poten-
tial biomarker applications of NETs in thromboembolic 
disorders are summarized in Table 4.

CONCLUSION

This review highlights the importance of NETs in pre-
venting blood clotting and bleeding, as well as their in-
teractions with different aspects of coagulation. NETs 
are also indicators of thromboembolic disease. NETs 
are involved in thrombus formation, maturation, and 
development, suggesting that they may play a crucial 

role in future therapeutic intervention. Additional work 
is required to optimally understand what transductions 
are at work when NETs influence thrombosis and hemo-
stasis; ongoing preclinical and clinical studies will help 
provide insights to improve existing anticoagulation and 
thrombolysis strategies. An improved understanding of 
NET biology may help improve patient outcomes and 
reduce the thrombotic burden on those afflicted with 
thromboembolic disorders.

ABBREVIATIONS

DNase-I  - deoxyribonuclease I
DVT - deep vein thrombosis
NETs - neutrophil extracellular traps
PAD4 - peptidyl arginine deiminase 4
PTE - pulmonary thromboembolism
VTE - venous thromboembolism
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Table 3. Therapeutic strategies targeting NETs
Therapeutic Approach Description References

PAD4 inhibition Inhibiting the PAD4 enzyme that triggers NET release [63,64]

Neutrophil elastase inhibition Targeting neutrophil elastase with inhibitors such as GW311616A [65,66]

DNase-I treatment Disaggregating the DNA scaffold of NETs to enhance thrombus resolution [67,68]

Histone deacetylase inhibition Targeting histones to decrease the prothrombotic properties of NETs [69]
Abbreviations: DNA - deoxyribonucleic acid, NET - neutrophil extracellular trap, PAD4 - peptidyl arginine deiminase 4.

Table 4. Potential biomarker applications of NETs in thromboembolic disorders
Biomarker Description References

NETs and their components Detection of NETs or their components in thrombi [31-33, 57, 58]

Free DNA and NET-derived biomarkers Assessment of general circulatory cell-free DNA or other
NET-derived biomarkers for risk evaluation and prognosis [65]

NETs in cancer-associated thrombi Identification of NETs in thrombi associated with cancer,
contributing to hypercoagulability [15, 16, 62]

Abbreviations: DNA - deoxyribonucleic acid, NET - neutrophil extracellular trap.
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